離心噴霧干燥熱風分布器的設計原則
由于噴霧干燥具有流程簡短、可處理熱敏性物料、易大型化等優越性,已經在許多領域得到應用。改革開放以后,我國出現了一大批專業化的干燥設備企業。近十年內噴霧干燥技術已取得了長足進步,產品質量已可與世界著名廠商相媲美,不僅滿足了國內輕化工、環保行業的需要,而且已向國外市場拓展。
長期以來,對噴霧干燥裝置的注意,一般著力于:
⑴ 霧化器(機)的選擇;
⑵ 足夠風量和熱量的配置;
⑶ 粉末回收及排放。
王喜忠等指出:“一個成功的噴霧干燥機的設計,應包括與霧化器相適應的熱風進出口的方式和熱風分布裝置”[1]。K.Master’s也提到在干燥塔內水分蒸發速率隨著霧滴與熱風的相對速度增加而增加[2]。
唐金鑫等在熱風分布器設計要求中,提出三條重要的原則[3],都強調了熱風分布對噴霧干燥的重要性。在隨后出現的裝置中,發現大多數企業仍然沒有給予足夠的重視,只是從結構上做到“形似”而實質仍未掌握,以致出現以下情況:
⑴ 在塔內同一截面上溫度差較大,導致物料局部粘壁;
⑵ 由于氣液兩相接觸不合理,使干燥強度大為下降,于是干燥塔的體積越做越大;
⑶ 在一臺比原設計處理量大為減小的干燥塔中,未注意熱風分布的流速范圍,降低了干燥強度,物料仍然大量粘壁;
⑷ 熱效率很低,出塔風溫難以下降。
因此,我們認為熱風分布器的設計正確與否,直接影響到干燥系統運行的成敗。本文擬在以前知識的基礎上,提出氣液兩相接觸的合理方式,以求對熱風分布器設計有正確的分析和指導。
1 理論依據
K.Masters[2]提出在有相對速度下霧滴的蒸發存在以下關系式:
傳質 Sh=2+K1RexScy (1)
傳熱 Nu=2+K2ReX’Pry’ (2)
式中:謝伍德數Sh =KgD/Dv,努塞特數Nu =hcD/Kd,施密特數Sc =μa/Dvρa,普朗特數Pr =Cpμa/Kd,雷諾數Re =Dvρa/μa。D為液滴直徑,ρa為干燥介質密度,μa為粘度,Cp為定壓比熱容,Kd為液滴周圍氣態膜的平均熱傳導率,hc為對流熱傳導系數,Kg為傳質系數,Dv為擴散系數。(1)、(2)式中的x,y,x’,y’和K1,K2尚有爭論,多數人趨向于:
x=x’=0.5 (3)
y=y’=0.33 (4)
式(3)中的x為平均值,隨Re增加而增加;Re由1增至104時,x從0.4增加到0.6。遺憾的是式(1)~(4)的試驗范圍其Re值均不超過1000。但從中已經可以看出,噴霧干燥機干燥的傳質和傳熱系數隨Re的增大而增大,即假設干燥介質和被干燥物料的性質不變時,Re起著重要的影響。而對Re起直接影響的,可認為是相對速度v。在傳統的液體無相變對流傳熱系數計算中,普遍應用Dittus和Boelter關聯式[4],
Nu=0.023Re0.8Pr0.4 (5)
或 (6)
α—給熱系數;
λ—液體熱導率;
d—粒徑;
v—氣液相對流速;
μ—液體動力粘度;
Cp—定壓比熱容;
ρ—液體密度。
式中的Re值≥10000, 0.7<Pr<120。
式(1)與式(5)相比較可以看出,Re數湍流層范圍內的冪值增加可以從0.4提高到0.8。這就可以理解K.Master’s等強調的“水份蒸發率隨霧滴與空氣的相對速度增加而增加”了。在 Re值處于湍流范圍時,大約呈0.8次方關系。
查看更多(共0)評論列表